

Bilkent University

Senior Design Project

Etymøn: A Deep-Learning Application for Etymological Clustering
of Words

High-Level Design Report

Nashiha Ahmed, Mert İnan, Cholpon Mambetova, Utku Uçkun

Supervisor: Prof. Mehmet Koyutürk
Jury Members: Prof. Uğur Doğrusöz and Prof. Varol Akman

High-Level Design Report

Dec 24, 2017

This report is submitted to the Department of Computer Engineering of Bilkent University

in partial fulfillment of the requirements of the Senior Design Project course CS491/2.

Table of Contents

Introduction 3

Purpose of the System 3

Design Goals 3

Trade-Offs 4

Proposed Software Architecture 5

Overview 5

Subsystem Decomposition 5

Hardware/Software Mapping 5

Persistent Data Management 6

Access Control and Security 6

Boundary Conditions 6

Subsystem Services 6

References 7

2

High Level Design Report

Etymøn: A Deep-Learning Application for Etymological Clustering of Words

1. Introduction
Etymøn is an analysis and tracing tool for word origins in all languages. It will be used to

review current etymological language families and if possible find new connections that were

not already present in current taxonomy. It will accomplish this using a deep learning

approach.

In the following sections, a brief description of the system and the system requirements are

discussed. In addition, Etymøn’s high-level design is also detailed.

1.1. Purpose of the System

Current etymological analyses rely on pattern matching or tracings between different

languages by experts in linguistics [1], yet it may be cumbersome or even improbable to

detect word origins in situations where direct links cannot be observed between two different

words. In this case, Etymøn will pose an advantage as it will be using a large corpus of data

in order to match words in any given language.

Various studies carried out by linguistic experts and historians improved the understanding

of language and its origins [2]. However, there is still “room for improvement” in the field.

Currently, most of the studies target the Proto-Indo-European language family [2]. There is

sparse research done for other languages, and there is not a single, unified resource for this

information. Most of the information is scattered online or among other forms of literature.

Since there is no similar project in the market yet, our software will be designed from

scratch, which would make it a greenfield project. However, we will use other existing

algorithms to build our software, such as deep learning algorithms among others that will be

specified further in the report.

1.2. Design Goals

Design goals of the system in the areas of performance, dependability, maintenance and

end-user criteria are described below/

Performance:

● Response Time: ​Etymon should be able to respond to user’s queries within an

unnoticeable delay. After finding the result of the user’s query, it should be able to

zoom into to the map smoothly and within unnoticeable delay.

● Throughput:​ As there can be multiple users of the system at the same time, Etymon

should be able to respond to all of the search queries of all the users. The system

should perform search and map traversal functions for each user at one time.

● Memory​: Space required for Etymon will be entirely dependent on the size of the data.

Machine learning model and codes of other modules will not occupy space as the data.

Data to train should be compressible and it should not occupy space on the devices of

the users, hence an online server is required to store all the training and testing data

and the generated language sea.

3

Dependability:

● Robustness:​ Users may input invalid search words. Etymon should be able to survive

invalid user inputs.

● Reliability:​ Etymon’s machine learning components should behave as described.

Differences between observed and specified behaviors of the system will be tolerated

minimally.

● Availability:​ The system should be available all the time as the queries can be received

at all times. Down times of servers should be minimal.

Maintenance:

● Extensibility:​ Etymon should be extensible in its machine learning, augmented reality

and object recognition modules. As these modules can be updated in the community

quite rapidly, the system should be able to adapt to changes in those modules and

allow interfacing of new classes and models.

● Modifiability: ​Especially in terms of its machine learning algorithm, Etymon should be

able to allow change. As better machine learning models can be developed, Etymon

should be able to accommodate these changes and train the model again on the data.

● Readability:​ As the code of the system will be minimal yet math-intensive, the code

should be readable.

● Traceability of requirements: ​It should be easy to map the code of specific subsystems

to specific requirements.

End-user:

● Utility:​ Etymon should help the user to understand the connections between different

languages and help the user’s work in comprehending the connections between

different words and their origins.

● Usability:​ It should be very simple for the user to traverse the system. Using Etymon

should not require any tutorials or training.

● Understandability:​ Understanding the working mechanism of Etymon should be easy.

Tracing the correctness of the results by the users should be possible.

1.3. Trade-Offs

Overfitting vs. Underfitting:​ During the training of the machine learning algorithm, overfitting

will be favored against underfitting. As the training data is the only aspect that is important

in this report, underfitting cannot be tolerated.

Precision vs. Accuracy:​ Even though both precision and accuracy of the results are favored, if

a choice will be needed, then precision will be favored. As the accuracy of the mapped words

cannot be checked for their correctness, precision among different language families is more

important than the accuracy of classification of that word.

Delivery Time vs. Functionality: ​If testing and training runs behind the schedule, leaving out

features such as augmented reality or hallucination may be possible, even though

undesirable.

Model Complexity vs. Machine Type​: As there are multiple machines with different

efficiencies that can run machine learning algorithms, they will be put to use. Instead of

increasing model complexity, in order to gain faster results, machine type will be changed to

a faster one.

4

2. Proposed Software Architecture
2.1. Overview

In this section of the report, we will be analyzing some components of the high level

architecture of Etymøn. Subsystem decomposition will be presented with its UML diagram in

order to simply show the modules in the application domain to the problem.

2.2. Subsystem Decomposition

An ideal candidate architecture for our purposes and that fits the design of Etymøn is the

client-server architecture. The user’s machine will serve as client and will request and

receive queries from a machine learning server. The server is our host computer where

permanent data will be stored and processed, such as the etymological map, connections

among words and languages; whereas the client side may perform some tasks such as

animation, AR and word hallucination.

Figure 1​: This figure shows the subsystem decomposition of Etymon and the architectural

design.

2.3. Hardware/Software Mapping

Since we want Etymøn to work for all languages and deliver a fast word look-up service, it

will require good hardware to run on. Storing words, their pronunciations and meanings for

multiple languages will require great amount of memory space. Also, running deep learning

algorithms on this graph and traversing it in a reasonable time will require computational

power. Therefore, we must use a supercomputer to run our program in addition to our

simple desktop computers. For this, we will use Google’s Cloud Machine Learning Engine [3],

TensorFlow [4]. Smartphones will also be required for the augmented reality and object

recognition components of the project.

5

2.4. Persistent Data Management

Etymøn’s effectiveness highly depends on its data management. It will find, store, manage

and present information. For this reason we decided to use a robust database system which

allow us to store excessive amount of data as quickly as possible. Etymøn will store many

words from many different languages. For each word it will also store its meaning,

pronunciation but also the data which will be used in deep learning process.

The word and pronunciation data will be acquired from Wikipedia. Furthermore, for English,

pronunciation data from online sound libraries will also be used, and for other languages,

International Phonetic Alphabet (IPA) readings of the words will replace sound files for

clustering. To store meanings of the words, online dictionaries can be used. Using this data,

we will create a Word Database.

2.5. Access Control and Security

Our software has no authentication method and can be accessed by all users. All users have

the same privileges except for the admins. The end-users of Etymøn will not have direct

access to word database of the program. They will be authorized to traverse the word

information freely but will not be able to alter it. Administrative users will have access to

graph modification tools. They will be able to alter the data of words, alter the relations

formed by deep learning algorithm, add or remove words etc. The program will run on

procedure-driven centralized control for the control of the software itself with triggers from

the user, and the control will reside in controller objects in the program code.

2.6. Boundary Conditions

In the boundary conditions, the system will act according to the following.

● Initialization: When Etymøn is brought from a non-initialized state​–​such as the

initial executable of the program​–​to the steady-state, the main processes will be

done by the user interface subsystem. The user interface will display the splash

screen during startup and then show the Language Sea.

● Termination: All cleanup procedures will be started by the program controller. No

single subsystem is allowed to terminate on its own. Every subsystem is notified if

a single subsystem is terminated. Read and write to the filesystem will be

completed before termination.

● Failure: If a failure occurs during read and write to the Word Database or search,

warning messages will be show. If failure occurs during getting the background

images or component images, a restart of the software will be requested.

3. Subsystem Services
The services that the subsystems will provide are on the interfaces of client and server. As

communication is necessary between them, information providers between modules such

as etymological data will be sent through these services of the subsystems. These services

are given in Figure 2.

6

Figure 2​: This figure shows the subsystem services of Etymon.

4. References
[1] C. Diagne and N. Barradeau, ​Free Fall, ​ https://artsexperiments.withgoogle.com/freefall/wave.

[Accessed: 09-Oct-2017].
[2] J. Redmon, ​YOLO: Real-Time Object Detection​. [Online]. Available:

https://pjreddie.com/darknet/yolo/. [Accessed: 09-Oct-2017].
[3] “Cloud ML Engine Overview | Cloud Machine Learning Engine (Cloud ML Engine) | Google

Cloud Platform,” Google. [Online]. Available:
https://cloud.google.com/ml-engine/docs/technical-overview. [Accessed: 25-Dec-2017].

[4] “TensorFlow,” TensorFlow. [Online]. Available: https://www.tensorflow.org/. [Accessed:
25-Dec-2017].

7

